

National Taipei University of Technology

Research Center of Energy Conservation (RCEC) for New

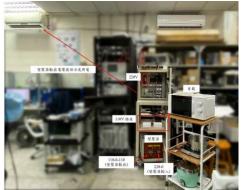
Generation of Residential, Commercial, and Industrial Sectors

Graduate Institute of Automation Technology

Prof. Men-Shen Tsai

- Education: PhD, EE Dept, University of Washington, USA
- Expertise: Industrial Internet of Things (IoT) Technology, Wireless
 Sensor Networks (WSNs), Signal Measurement, Feature Recognition,
 Smart Grid
- RCEC Principal Research: Smart grid technology IEC61850,

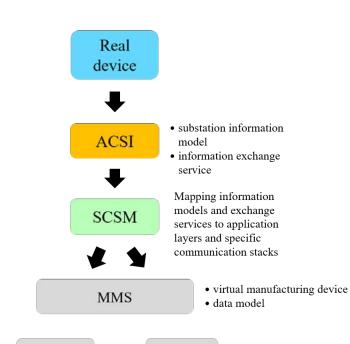
 Non-Intrusive Load Monitoring


Office: Room 605-1, Integrated Technology Complex

Phone: +886-2-2771-2171 ext, 4326

E-mail: mstsai@mail.ntut.edu.tw

- RCEC Research Goals:
 - (1) Substation Automation
 - (2) Distributed Energy
 - (3) Event Detection (accuracy:98%~99%)
 - (4) Load Identification(accuracy:97%~98%)

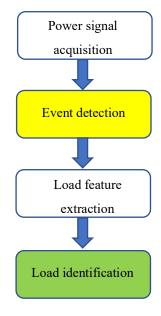


RCEC-NTUT

Power Consumption Environment

Research Method and Application

IEC61850 communication services


Researsch Focus:

- 1. Construction of sampling system with Precision Time Protocol
- 2. Merging Unit
- **3.** Construction of voltage triggered analog protection system
- 4. Low voltage control protection relay
- 5. Circuit Breaker IED

GOOSE

- SV
- GOOSE transfer model
- Goose control block
- Multicast sample value control block
- IEEE 1588

Non-Intrusive Load Monitoring(NILM)

1.Event Detection:

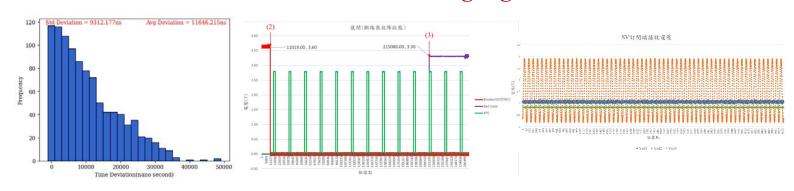
probabilistic statistics : CUSUMs

Non-parametric test

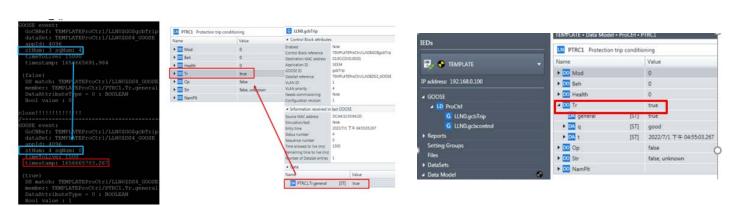
Machine learning: CNN

Self-Attention Based

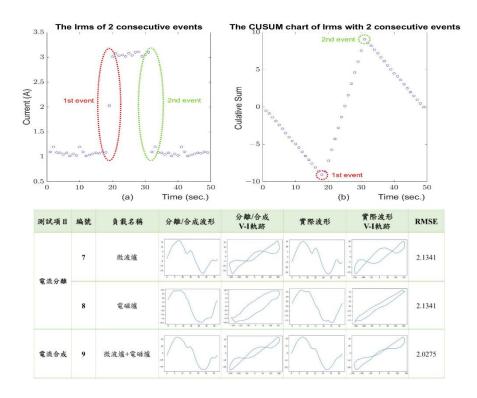
2.Load Identification:


probabilistic statistics: Gaussian Mixed Model

Machine learning: 1D-CNN


2D-CNN

Siamese network
Transfer learning


Related Research Highlights

Implementation of an Under Voltage Protection System by Integration of IEC 61850 GOOSE and SV

GOOSE Transmission for IEC61850 Based Circuit Breaker Intelligent Electronic Devices

Results of Nonlinear-Load hybrid experiment